Future work

Via twitter yesterday, I was pointed to this piece on one of the WSJ’s blogs. Basically it looks at the likelihood that given job type might or might not be replaced by some automated function. Interestingly, the WSJ suggested that the safest job might be amongst the interpreter/translation industry. I found that interesting for a number of reasons so I dug a little more. The paper that blogpost is based on is this one, from Nesta.

I had a few problems with it so I also looked back at this paper which is earlier work by two of the authors involved in the Nesta paper.  Two of the authors are based at the Oxford Martin institute; the third author of the Nesta paper is linked with the charity Nesta itself.

So much for the background. Now for my views on the subject.

I’m not especially impressed with the underlying work here: there’s a lot of subjectivity in terms of how the underlying data was generated and in terms of how the training set for classification was set up. I’m not totally surprised that you would come to the conclusion that the more creative work types are more likely to be immune to automation for the simple reason that there are gaps in terms of artificial intelligence on a lot of fronts. But I was surprised that the outcome focused on translation and interpreting.

I’m a trained interpreter and a trained translator. I also have postgraduate qualifications in the area of machine learning with some focus on unsupervised systems. You could argue I have a foot in both camps. Translation has been a target of automated systems for years and years. Whether we are there yet or not depends on how much you think you can rely on Google Translate. In some respects, there is some acknowledgement in the tech sector that you can’t (hence Wikipedia hasn’t been translated using it) and in other respects, that you can (half the world seems to think it is hilariously adequate; I think most of them are native English speakers). MS are having a go at interpreting now with Skype. As my Spanish isn’t really up to scratch I’m not absolutely sure that I’m qualified to evaluate how successful they are. But if it’s anything like machine translation of text, probably not adequately. Without monumental steps forward in natural language processing – in lots of languages – I do not think you can arrive at a situation where computers are better at translating texts than humans and in fact, even now, to learn, machine translation systems are desperately dependent on human translated texts.

The interesting point about the link above is that while I might agree with the conclusions of the paper, I remain unconvinced by some of the processes that delivered them to those conclusions. To some extent, you could argue that the processes that get automated are the ones that a) cost a lot of people a lot money and b) are used often enough to be worth automating. It is arguable that for most of industry, translation and interpreting is less commonly required. Many organisations just get around the problem by having an in house working language, for example, and most organisations outsource any unusual requirements.

The other issue is that around translation, there has been significant naiveté – and I believe there continues to be – in terms how easy it is to solve this problem automatically. Right now we have a data focus and use statistical translation methods to focus on what is more likely to be right. But the extent to which we can depend on that tend to be available data and that varies in terms of quantity and quality with respect to language pairs. Without solving the translation problem, I am not sure we can really solve the interpreting problem either given issues around accent and voice recognition. For me, there are core issues around how we enable language for computers and I’ve come to the conclusion that we underestimate the non-verbal features of language such that context and cultural background is lost for a computer which has not acquired language via interactive experience (btw, I have a script somewhere to see about identifying the blockages in terms of learning a language). Language is not just 100,000 words and a few grammar rules.

So, back to the question of future work. Technology has always driven changes in employment practices and it is fair to say that the automation of boring repetitive tasks might generally be seen as good as it frees people up to higher level tasks, when that’s what it does. The papers above have pointed out that this is not always the case; that automation occasionally generates more low level work (see for example mass manufacture versus craft working).

The thing is, there is a heavy, heavy focus on suggesting that jobs disappearing through automation of vaguely creative tasks (tasks that involve a certain amount more decision making for example) might be replaced with jobs that serve the automation processes. I do not know if this will happen. Certainly, there has been a significant increase in the number of technological jobs, but many of those jobs are basically irrelevant. The world would not come to a stop in the morning if Uber shut down, for example, and a lot of the higher profile tech start ups tend to be targeting making money or getting sold rather than solving problems. If you look at the tech sector as well, it’s very fluffy for want of a better description. Outside jobs like programming, and management, and architecture (to some extent), there are few recognisable dream jobs. I doubt any ten year old would answer “business analyst” to the question “What do you want to do when you grow up”.

Right now, we see an excessive interest in disruption. Technology disrupts. I just think it tends to do so in ignorance. Microsoft, for example, admit that it’s not necessary to speak more than one language to work on machine interpreting for Skype. And at one point, I came across an article regarding Duolingo where they had very few language/pedagogy staff particularly in comparison to the number of software engineers and programmers, but the target for their product was to a) distribute translation as a task to be done freely by people in return for free language lessons and b) provide said free language lessons. The content for the language lessons is generally driven by volunteers.

So the point I am driving at is that creative tasks, which feature content creation, for example carrying out translation tasks, or providing appropriate learning tools, these are not valued by the technology industry. What point is there training to be an interpreter or translator if technology distributes the tasks in such a way as people will do it for free? We can see the same thing happening with journalism. No one really wants to pay for it.

And at the end of the day, a job which doesn’t pay is a job you can’t live on.

Leave a Reply

Your email address will not be published. Required fields are marked *